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Abstract: This article describes a propagation scheme for Bayesian net-
works with conditional Gaussian distributions that does not have the numer-
ical weaknesses of the scheme derived in Lauritzen (1992). The propagation
architecture is that of Lauritzen and Spiegelhalter (1988).

In addition to the means and variances provided by the previous algo-
rithm, the new propagation scheme yields full local marginal distributions.
The new scheme also handles linear deterministic relationships between con-
tinuous variables in the network specification.

The new propagation scheme is in many ways faster and simpler than
previous schemes and the method has been implemented in the most recent
version of the HUGIN software.
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1 Introduction

Bayesian networks have developed into an important tool for building sys-
tems for decision support in environments characterized by uncertainty (Pearl
1988; Jensen 1996; Cowell et al. 1999).

The exact computational algorithms that are most developed are con-

cerned with networks involving discrete variables only.
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Lauritzen (1992) developed a computational scheme for exact local com-
putation of means and variances in networks with conditional Gaussian dis-
tributions. Unfortunately the scheme turned out to have fatal numerical
difficulties, basically due to a computationally unstable transformation be-
tween two different representations of these distributions.

The motivation for the present work is to remedy this numerical insta-
bility. The fundamental idea behind the developments below is at all times
to keep the interesting quantities represented in units that have a direct
meaning such as probabilities, means, regression coefficients, and variances.
These must necessarily be of a reasonable order of magnitude.

The computational scheme to be developed is rather remote from the
computational architecture used to deal with the discrete variables in the
HUGIN software and similar schemes as represented, for example, in ab-
stract form in Shenoy and Shafer (1990) and Lauritzen and Jensen (1997).
The difference is partly related to the fundamental operations of combina-
tion and marginalization being only partially defined, but also the handling
of evidence is quite different. The scheme is closest to the original scheme
developed in Lauritzen and Spiegelhalter (1988), but abstract considera-
tions such as those in Shafer (1991) seem necessary to embed the scheme in
a unifying framework.

Additional benefits of the present scheme includes that deterministic lin-
ear relationships between the continuous variables can be represented with-
out difficulty, and we show how to calculate full local marginals of continuous
variables without much computational effort. Both of these represent major

improvements over the original scheme of Lauritzen (1992).

2 CG distributions and regressions

The Bayesian networks to be considered have distributions that are con-
ditionally Gaussian, a family of distributions introduced by Lauritzen and
Wermuth (1984, 1989). We shall briefly review some standard notation but
otherwise refer the reader to Lauritzen (1996) for further details.

The set of variables V is partitioned as V' = A U T into variables of
discrete (A) and continuous (I') type and the joint distribution of the con-
tinuous variables given the discrete is assumed to be multivariate Gaussian,

i.e.

LY [I=i)=Np|(&(i),%(i)) whenever p(i)=P{I=i} >0,
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where Y denotes the continuous variables, I the discrete, |I'| denotes the
cardinality of T', and X(i) is positive semidefinite. We then say that X =
T1UY follows a CG distribution.

The symbol /\/‘F‘(f,Z) denotes the multivariate Gaussian distribution
with mean & and covariance matrix . In the case where ¥ is positive
definite, this distribution has density

Fyle D) = {enMdes) e { 10w 0.

If ¥ is singular, the multivariate Gaussian distribution has no density
but is implicitly determined through the property that for any vector v, the

linear combination v 'Y has a univariate Gaussian distribution:
LOTY) =N g0 ),

where N7 (p,0) is to be interpreted as the distribution degenerate at pu.
See for example Rao (1973), Chapter 8, for a description of the Gaussian
distribution at this level of generality.

Note: there is a slight difference between the terminology used here and
in Lauritzen (1996) in that we allow p(i) to be equal to 0 for some en-
tries . We also avoid using the so-called canonical characteristics of the CG
distribution as the numerical instability of the scheme in Lauritzen (1992)
is associated with switching between these and the moment characteristics
(p,&,%). As an additional benefit, we can then allow singular covariance
matrices 2.

Occasionally it is of interest to describe how a CG distribution depends
on additional variables. If the dependence on a set of discrete variables j

and a vector of continuous variables z is determined as

pli|J =3, 7 =z) = p(ilj),
LY |[I=i,J=j,Z==z) = N(A(i|j) + B(ilj)z C(il 1)),

we refer to this dependence as a (simple) CG regression. Note that neither
the covariance matrix nor the discrete part depends on the continuous vari-
ables z and the conditional expectation of the continuous variables depends
linearly on the continuous variables for fixed values of the discrete variables
(7,7). In a general CG regression, p is also permitted to depend on z in a
specific way (Lauritzen 1996), but this is not relevant here.
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3 Mixed Bayesian networks

We consider probabilistic networks over a directed acyclic graph (DAG),
known as Bayesian networks (Pearl 1986). A mixed Bayesian network with
conditional Gaussian distributions is specified over a set of nodes or vari-
ables V, partitioned as V = A UT into discrete and continuous variables as
above. The DAG associated with the network must satisfy the restriction
that discrete nodes have no continuous parents. The conditional distribu-
tions of discrete variables given their (discrete) parent variables are specified
as usual, whereas the conditional distribution of continuous variables are

given by CG regressions
LY 1=, Z = 2) = N(a(i) + B(0) 7).

Note that as Y is one-dimensional, v(7) is just a nonnegative real number.
If v(i) = 0, this conditional distribution specifies a linear and deterministic
dependence of Y on Z.

The assumptions above imply that the joint distribution of all variables
in the Bayesian network is a CG distribution.

The computational task to be addressed is that of computing the joint
distribution of interesting subsets of these variables in particular of a sin-
gle variable possibly given specific evidence, i.e. given known values of
arbitrary subsets of other variables in the network. This distribution will in
general be a mixture of conditional Gaussian distributions.

The propagation scheme to be described involves the usual steps: Con-
struction of a junction tree with strong root, initialization of the junc-
tion tree, incorporation of evidence, and local computation of marginals

to cliques.

4 Potentials and their operations

4.1 CG potentials

The basic computational object is that of a CG potential. A CG potential is
represented as ¢ = [p, A, B,C|(H |T). Here (H |T) denotes a partitioning of
the continuous variables in the domain D of ¢ into head and tail: DNT =
H UT. We denote the variables in the head by Y and those in the tail by Z
and assume these to be r and s-dimensional. An arbitrary configuration of

the discrete variables in the domain is denoted by 7. Thus, every potential

www.manaraa.com



has a domain with discrete nodes, head nodes and tail nodes, some of which

could be absent. In the expression above

e p = {p(i)} is a table of nonnegative numbers, i.e. a ‘usual’ potential

as in the discrete case;
o A={A(:)} is a table of r x 1 vectors;
e B ={B(i)} is a table of r x s matrices;
e C'={C(i)} is a table of r x r positive semidefinite symmetric matrices.

The potential represented by [p, A, B, C](H |T) specifies the CG regression
P(I=i)xp(i), LY|I=i,Z=2z)=N,(A@)+ B(i)z,C(7)).

The abstract notion of potentials with head and tail is due to Shafer
(1991). In many ways it would be more natural also to partition the dis-
crete variables into head and tail variables, then reflecting that the potentials
always represent a conditional distribution of head variables given their tail.
But as the partitioning of discrete variables is not exploited in our propa-
gation scheme, we have chosen not to do so. A propagation scheme of the
‘lazy’ type (Madsen and Jensen 1998) could exploit such a partitioning.

The initial conditional distribution for a continuous variable v with par-
ent nodes pa(v) in a mixed Bayesian network corresponds to the CG po-
tential [1,, B7,~](H |T) with H = {v}, T = pa(v) N T, and discrete part
of the domain equal to pa(v) N A. Similarly, the specification of the condi-
tional distribution of a discrete variable given its parents corresponds to the
CG potential [p,—, —, —](—|—), where p is determined by the conditional
probability tables. The discrete part of the domain is equal to the family
fa(v) = v Upa(v), and hyphens indicate that the corresponding parts of the
potential are void.

4.2 Extension and reduction

A CG potential can be extended by adding discrete variables to its domain
or continuous variables to its tail. When adding discrete variables to its
domain, the parts of ¢ are extended as p*(i,j) = p(i) etc. When adding
continuous variables to its tail, the B matrices are extended by adding zero

columns for each of the new tail variables:
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Similarly, if B has columns that are identically zero for all values of i, the
corresponding variables can be removed from the tail of the potential, and
we say that the tail is reduced. If no columns of B are identically zero, the

tail of the potential is said to be minimal.

4.3 Marginals

As in the propagation scheme of Lauritzen (1992), marginals of a CG po-
tential are only defined under certain conditions and when marginals over
groups of discrete and continuous variables are calculated, the marginals
over continuous variables are calculated first.

Marginals over continuous variables can only be calculated over head
variables. If [p, A, B, C|(H |T) is decomposed as

Al) (Bl> (011 Cm)

H = (H ’H ’ A= ) B = 3 C = 3

(H, o) (AQ By Co1 Co
corresponding to a partitioning of the head variables as Y = (Y7,Y5), the
marginal of ¢ to D' = D \ Hs is given as

o7 =[p, A1, By, Cii|(H, | T).

We say that these marginals are strong as they correspond to calculating
ordinary marginals of the relevant conditional Gaussian distributions.

When all head variables have been removed by marginalization, the tail
can be reduced to become empty so that a discrete potential emerges. This
leads indirectly to marginalization of tail variables.

Marginals over discrete variables are defined only when the tail of the
potential is empty, i.e. when there are no continuous conditioning variables
and therefore no B matrix. Then the marginal of the CG potential ¢ =
[p, A, —, C|(H|—) with discrete domain partitioned as U U W over W is

¢¢UUH = [ﬁaAa *aé](H‘i)a
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where i = (iy,iw ). This marginalization is said to be weak when it does
not correspond to calculating the full marginal distribution.

In general the full marginal distribution will be a discrete mixture of CG
distributions, and the distribution represented by the weakly marginalized
potential will be the CG distribution closest in Kullback Leibler distance to

the true marginal, see Lauritzen (1996), Lemma 6.4.

4.4 Direct combination

The combination operation for CG potentials will not be defined for an
arbitrary pair of potentials and as such the scheme is quite different from
most other propagation schemes.

The direct combination of two CG potentials ¢ = [p, A, B,C|(H;|T})
and ¢ = [q, E, F, G](H|T>) is defined only if the head of v is disjoint from
the domain of ¢, i.e. satisfies that

Hngl :w (1)

Here we always assume that the potentials have first been reduced so that
the tails are minimal.

If (1) is fulfilled for the reduced potentials, these are subsequently ex-
tended such that the extensions have Ty = H;UT};. This is done by extending
Ty to Ty U (Ty \ Hy) and T to Ty U Hy UT}.

Next, let F' = [F} : F5] be partitioned into 79 X r1 and 79 X s; matrices
corresponding to (Hy,T7). We then define the direct combination as the
(apparently non-commutative) product

[pa U, Va W](H‘T) = [paAaBaC](Hl |T1) ® [QaEaFa G](HQ‘T2)5

where
H = H{ U H,, T:(T1UT2)\H, D = Dy U Dy,
and
p=Drq
A
U= (E—i—FlA)
B
V= <F2+F1B>
C CF/
W: T .
FC G+ FCF
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This combination operation corresponds to ordinary composition of condi-
tional distributions. Note that if both of ¢ ® ¢ and 1 ® ¢ exist, they are
equal. The direct combination also satisfies
(pey)n=9¢ (Y an)
in the sense that if the combinations on one side are well defined, so are those
on the other side and the resulting potentials are the same. Shafer (1991)
has called this type of algebraic structure a partial commutative semigroup.
The notation above reflects that the operation of direct combination in
some sense is similar to that of forming disjoint union of sets.
Unfortunately, direct combination of CG potentials is not sufficient for
our propagation scheme to work for an arbitrary mixed Bayesian network.
But before we can define a more general combination, we need to introduce

the notion of complement.

4.5 Complements

If the head of a CG potential ¢ = [p, A, B, C|(H |T) is partitioned as

e 4= (G) o () oo () el
and [p*, A1, B1,C11|(H1|T) is the strong marginal of ¢, then we define its
complement ¢197 as the CG potential [q, E, F, G](Hy| H; UT), where

q=rp/p"

E=A4; - CuChi4

F =[CnCyy : By — CyCy By ]
G = Oy — Oy C1 Ch.

Here M~ denotes an arbitrary generalized inverse of the matrix M (Penrose
1955), i.e. an arbitrary matrix M~ satisfying

MMM = M, 2)
see also Rao (1973), pp. 24-27, and Rao and Mitra (1971). Then
[pﬂ A’ B7 C](H‘T) = [p*a Ala Bla Cll](Hl |T) ® [Q7 Ea Fa G](HQ ‘ Hl U T)a

which is easily checked by using the formulae for combination together
with (2) and the fact that for any generalized inverse Cy; of Cj; it also
holds that

CnCyCi = O,

see e.g. Rao (1973), formula (8a.2.12).
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Note that in the above expressions we either have p* = p or H; = (). The
decomposition of a potential into its strong marginal and its complement
corresponds exactly to the decomposition of a probability distribution into

its marginal and conditional.

4.6 Recursive combination

We next define a more general combination of CG potentials. This is re-
quired for the initialization process described in the section below. Consider
again two potentials ¢ = [p, A, B,C](H;|Th) and ¢ = [q, E, F,G](Hy|T>)
with minimal tails. If H; N Hy # () the combination will remain undefined.
If the heads of the potentials are disjoint, we let

PRY=9¢RY or ¢VYP=¢Y®¢

if at least one of the right-hand-side expressions are defined. As we have
¢ @1 =1 @ ¢ if both are defined, there is no ambiguity in this definition.
If neither of the direct combinations are defined, we must have that

HlﬂDQ#(b and HQﬂDl#(b. (3)

Let D19 = Hy \ Dy and Dy = Hy \ D;. If both of these are empty, the
combination will not be defined. Else we decompose one of the factors, say ¢

(assuming Do # 0), as
¢ = ¢¢(D1\D12) ® ¢\(D1\D12) =¢' @ q"
and attempt to combine ¢ and v as
PR Y= (¢ ®P)®e".

This equation is to be understood recursively in the sense that the proce-
dure described is to be repeated for the product ¢’ ® v, whereas the direct
combination in the expression is well defined by construction.

The recursion terminates unsuccessfully if two potentials with minimal

tails satisfy (3) and also
Hl\DQZHQ\Dlz(b. (4)

Then the combination of ¢ and 3 remains undefined.
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5 Initialization

Setting up the computational structure involves several steps: forming a
strong junction tree with strong root, assigning potentials to cliques, trans-
forming these to potentials of a specific form by sending messages first to-
wards the root, then away from the root.

A junction tree with strong root is constructed in the usual way, see
for example Cowell et al. (1999), Chapter 7. Thus, we assume to begin
our computational scheme at the point where we have specified a mixed
Bayesian network and an associated junction tree with cliques C and a root
R € C such that for all neighbouring cliques C' and D with C' closer to the
root than D, we have that

S=CNDCA or D\CCT, (5)

i.e. if the ‘residual’ D\ C contains a discrete variable, then the separator S
consists of discrete variables only. Also, it holds for all variables v that fa(v)

is contained in some clique of the junction tree.

5.1 Assignment of potentials to cliques

Every CG potential corresponding to a specification of the conditional dis-
tribution of a node given its parents is assigned to an arbitrary clique of the
junction tree that contains its family. The potentials assigned to a given
clique are subsequently combined in some order. This can always be done
using direct combination as the DAG is acyclic and each continuous node is

head of exactly one potential.

5.2 Collecting messages at the root

The next step in the initialization process involves sending messages from
the leaves of the junction tree towards the root in a way similar to the
process known as COLLECTEVIDENCE in the standard HUGIN architecture
(Jensen et al. 1990), although the messages sent are slightly different. Thus,
a clique is allowed to send a message if it is a leaf of the junction tree, or
if it has received messages from all of its neighbours further away from the
root. The process stops when the root has received messages from all of its
neighbours. We use the term COLLECT for this operation.

When a COLLECT-message is sent from a clique C to its neighbour D
towards the root with separator S = C'N D, the potentials ¢ on C' and ¢p

10
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on D are modified to become ¢¢, and ¢7,, where

b= by B = dp ® BY, (6)

i.e. ¢¢ is the complement of ¢¢ after marginalization to the separator and
¢} is obtained by combining the original potential with the marginal of ¢¢.
It remains to be argued that the combination in (6) is indeed well defined.
To see this we first realize that the heads of any two potentials to be
combined must necessarily be disjoint as a variable occurs only once as head.
Further, for any of the potentials involved in (6), it holds that tail vari-
ables have no parents in the DAG induced by the conditional specifications
that have been combined and possibly marginalized to form the potential.
Thus, if the potential is reduced to have minimal tail, there must be a di-
rected path from every variable present in the tail of the potential to some
variable in the head of the potential. Because then it holds for any tail
variable u that it is not conditionally independent of the head given the
remaining tail variables. Thus there must be a trail which d-connects u to
some variable in the head. As tail variables have no parents, this trail must
initially be directed away from u and leave the tail immediately. As only tail
variables are in the conditioning set, there can be no head-to-head nodes on
this active trail, which then must form a directed path from u to the head.
Assume that (4) is satisfied and H; and Hs are both nonempty. This
implies Hy C Ty and Hy C Tj. From this we deduce that there must be a
directed path from every variable u € Hy (implying u € Tb) to some variable
v € Hy (implying v € T7), and from v there must be a directed path to some
variable w € Hi. Thus, from every u € H; there is a directed path to some
w € Hi, and since Hj is nonempty and finite, this would contradict the
acyclicity of the DAG.
To illustrate that recursive combination is necessary for the initialization

process, we consider two simple examples.

Example 1 Consider the DAG in Figure 1. When potentials are assigned
to cliques, the nodes ¢ and e must be assigned to {b, ¢, e} and the remaining
nodes to {a,b,c, d}.

Combining the potentials in the two cliques leads to potentials with head
and tail ({c, e} [{b}) in {b,c,e} and ({b,d}|{c}) in {a,b,c,d}.

When the first of these is marginalized to the separator {b, ¢}, the result
has head and tail ({c}|{b}), which cannot be directly combined with the
potential on the root clique {a,b, ¢, d}.

11
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Figure 1: A mixed Bayesian network with associated junction tree. The
variable a is the only discrete variable and the strong root is {a, b, ¢, d}.

The root clique potential is then decomposed into potentials with head
and tail ({d}|{b, c}) and ({b}|{c}). But the latter can be reduced to ({b}|—)
as the dependence on c is spurious. The potentials can now be combined
directly. O

In the example above, it was the potential in the receiving clique that
was decomposed. And had we not combined the potentials in the receiving
clique before combining with the incoming message, the combination could
have been performed directly. The next example illustrates that it may be
the incoming message which needs to be decomposed and there is no way
to avoid computation during the decomposition.

Example 2 Consider the DAG in Figure 2. When potentials are assigned to
cliques, the nodes d, e and f must be assigned to {c,d, e, f}, ¢ to {a,c,d, e},
and b to {a,b,d}. There are two choices for the node a and we choose to
assign it to the clique {a, b, d}, which is also chosen as root.

When COLLECTing towards the root, the first message is the {c, d, e}-
marginal of the potential in {¢,d,e, f}. This must be calculated by com-
bining the assigned potentials to one with head and tail ({d, e, f}|{c}) and
then marginalizing to ({d, e} |{c}).

Again this cannot be directly combined with the potential on the neigh-
bouring clique which has head and tail ({c}|{e}).

The incoming potential is then decomposed into potentials with head and
tail ({d}|{c,e}) and ({e}|{c}). But the latter can be reduced to ({e}|—)
as the dependence on c is spurious. The potentials can now be combined
directly. O

After the root has received messages from all its neighbours, the root
potential contains the correct root marginal and its tail is then empty. If
evidence has been incorporated, a normalization of the discrete part of the

root potential may be necessary, see Section 7.

12
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Figure 2: A mixed Bayesian network with associated junction tree. The

variable a is the only discrete variable and the strong root could be chosen
to be either {a,b,d} or {a,c,d,e}.

Also, the potential ¢ representing the joint distribution of all the vari-
ables is now equal to the combination of all the clique potentials ¢¢

o=@ dc- (7)

cecC

In fact, as all marginals computed during the COLLECT phase have been
strong, it holds for any subset C’ C C which contains the root R and forms

a connected subtree of the junction tree that

o = R de, (8)

cec’

where €' = Jgoeer C. As the complements are stored in the cliques dur-
ing COLLECT and the separators are not playing a specific role during this
process, the computation is similar to the process of forming a set chain in
Lauritzen and Spiegelhalter (1988). Thus the inward computation is of the
type called Lauritzen—Spiegelhalter architecture in Shafer (1996), see also
Lauritzen and Jensen (1997).

5.3 Distributing messages from the root

The first step in the calculation of marginals involves sending messages away
from the root, similar to DISTRIBUTEEVIDENCE in the standard HUGIN
architecture. The root begins by sending messages to all its neighbours, and
a clique is allowed to send a message as soon as it has received one from its
neighbour closer to the root. We use the term DISTRIBUTE for this process
which again has slightly different messages than in the standard HUGIN

architecture.

13
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When a DISTRIBUTE-message is sent from a clique C' to its neighbour D
further away from the root with separator S = C'" D between them, C has
just received a message from its neighbour towards the root. We make the
inductive assumption that the separator S’ towards the root then contains

the weak clique marginal of the joint potential

b5 = ¢

When sending a message, a new potential ¢g is created on S as follows.
First the weak clique marginal at C' is calculated as

¢ = dg & g (9)

That this formula is correct is seen exactly as in Lauritzen (1992). Next this

potential is further marginalized to the separator
¢s = (") = ¢+

The combination is well defined because after the collect operation, comple-
ments were stored in the cliques so the head of ¢¢ is disjoint from S’ and
the (weak) marginal is well defined as the tail of ¢¢ is contained in the head
of ¢pg/ implying that the combination in (9) has empty tail.

After DISTRIBUTE the separators all contain weak marginals to the sep-
arator nodes.

Note that we have chosen not to store the weak clique marginals cal-
culated under DISTRIBUTE, but preferred to keep the original complement
potentials. This is a minor variation of the Lauritzen—Spiegelhalter archi-
tecture.

The initialization process is now completed. The cliques of the junction
tree contain complement potentials, the separators contain weak marginals

of the joint potential, and this joint potential can be recovered by (7).

6 Computation of marginals

When the junction tree has been initialized as described in the previous

section, various types of marginals can easily be calculated.

6.1 Marginals of variables in a single clique

If not stored separately, weak clique marginals can always be recalculated
as in (9) when needed, and further marginalized to subsets of cliques, in

particular to single nodes.

14
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Under some circumstances, these weak marginals happen to be strong
and give the correct, full marginal distribution of the variables involved.
This is clearly true if the desired marginal involves discrete variables only.
But there are other cases of interest when this is true.

As already mentioned, the root clique contains the correct full marginal
distribution of its variables. Thus, for example, the true marginal of the set
of continuous variables Y in the root clique can be easily calculated as a
Gaussian discrete mixture with weights p(7), i.e.

LY) =3 (i) » N(A(D), C (7)), (10)

where the root potential is [p, A, —, C](R N T'| —). Further marginalization
can then easily be performed.

But the same holds for a clique C that satisfies the slightly less restrictive
condition that the tail of its potential is empty. For example, this is the case
if the separator of the clique C' towards the root contains discrete variables
only.

To see this we argue as follows. From (8) we have that the true marginal
to the union of cliques on the path from the root to C is given by combination

of the relevant potentials
k
¢¢D = ® ¢Cja
j=1
where
k
D=|]¢
j=1

and the cliques on the path are R = C4,...,C; = C. The continuous vari-
ables in C' are conditionally independent of the remaining discrete variables
on this path, given the separator variables; as the tail of the potential on C
is assumed empty, this also holds given just the discrete separator variables.
Proposition 6.3 of Lauritzen (1996) then yields that the weak marginal to C

is also equal to the full marginal and we can proceed as with the root clique.

6.2 Rearranging the junction tree

To obtain the marginal of a set of variables that is not a subset of some clique
of the junction tree or to obtain strong marginals of a group of variables or
a single variable that is not in a clique having a potential with an empty
tail, the junction tree must be rearranged. Fortunately there is a simple

15
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operation that can be used to achieve the necessary rearrangement which
we denote by PUSH. It acts on a group of variables M which are contained in
a clique W with neighbour U towards the root and corresponding separator
S = UNW. The operation PUSH appplied to the variables M does the

following:

1. The potential ¢y is decomposed as
dw = (¢w )M & (gw) M5,

2. The clique U is extended to U* = U U M and similarly §* = S U M.

3. The potentials are changed as
du- = du @ (pw )M, dge = ds @ (ow )M, dw = (dw) M5

After the PUSH operation the variables in M have come closer to the strong
root, but the extended junction tree still represents the joint potential as
after the initialization. The price that has been paid is that the clique U
has increased to U*.

Example 3 We illustrate the PUSH operation using the mixed Bayesian
network in Figure 2, assuming that we have chosen {a, b, d} as root.

After initialization the clique {a, ¢, d, e} contains the potential represent-
ing the conditional distribution of variables {¢, e} given {a, d} having head
and tail ({c, e}|{d}).

If we use PUSH on {c}, this potential is decomposed into its marginal with
head and tail ({c}|{d}) and complement with head and tail ({e}|{c, d}).
The root clique is now extended with the variable ¢ and the marginal is
combined with the root potential, whereas the complement is kept in the
clique {a,c,d, e}. O

6.3 Marginals of variables in different cliques

If a (weak) marginal is desired of a set of variables that is not a subset of
some clique of the original junction tree, we first form the smallest connected
subtree of the original junction tree that contains all the variables. Let C'
be the clique of the subtree that is closest to the strong root of the original
junction tree. By repeated use of the PUSH operation we eventually achieve
that the variables in question all become members of C'. The desired weak

marginal can then be computed directly using (9).
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6.4 Strong marginals

If the strong marginal of a group of variables is desired, the PUSH operation
again yields the appropriate rearrangement of the junction tree.

As in the computation of weak marginals, we first form the smallest
connected subtree of the original junction tree that contains all the variables.
Let C be the clique of this subtree that is closest to the strong root R of
the original junction tree. Again, we use the PUSH operation to make the
variables in question become members of C. If C, after performing the PUsH
operations, has a potential with an empty tail, we can compute the desired
strong marginal from the potential of C as in (10). Otherwise, we need to
PusH the variables in question closer to R until we eventually have all the
variables contained in a clique having a potential with an empty tail; from
the potential of this clique we can compute the desired potential as in (10).
If necessary, we may need to PUSH the variables all the way to R.

The calculation of the strong marginal for a single continuous variable
is an important special case, and from the above discussion it follows that
such a marginal can be calculated with limited additional effort, since no
potential of the junction tree will be extended with more than a single

continuous variable as part of this calculation.

7 Incorporating evidence

At this point we assume that the initialization process has been completed so
that the cliques of the junction tree contain complements and the separators
contain weak marginals.

Discrete evidence is incorporated as usual, it does not matter where, and
it is not necessary to insert discrete evidence in more than one clique.

To describe how to incorporate continuous evidence we first realize that
every continuous node necessarily appears as head in exactly one clique,
which is the clique where it appears closest to the strong root. In all other
clique potentials where it appears, it must be a tail node.

Also, if U and W are neighbouring cliques with U closest to the root,
the continuous variables in the separator S = U N W constitute a superset
of the tail of the potential (complement) that is stored in W.

It is most convenient to incorporate evidence about continuous nodes a
single node at a time. Evidence that Y5 = y2 must be entered in all cliques
where Y5 appears. We assume that the clique where Y5 appears as head
has a potential with an empty tail. If this is not the case, we use the PusH
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operation described above in Subsection 6.2 until we achieve this. We then

proceed as follows:

1. In cliques where Y5 is a tail node, the tail of the clique potential
is decreased by Ys, p and C are unchanged, and B is changed by
removing the column By corresponding to Y;. A is modified to become
A* = A+ Boys.

2. In the clique where Y5 is a head node we partition the head nodes as
under marginalization into Y = (Y7,Y3). The potential after inserted
evidence is denoted ¢* = [p*, A*, B*, C*|(H*|T*). The head H* is
obtained from H by removing Y5. The tail T* (and thus B*) is empty.

We then distinguish two cases:

(a) If there is a j with C2(j) = 0 and ya = Aa(j), we let for all i

(i) = {p(z) if yo = Ag(i) and Cos(i) =0

0 otherwise

and for all i with p*(i) > 0 we let
A*(i) = A1(1), C*(i) = C11(4).
(b) Else we let

_ e —d(ya—A2(i)?/Ca2(i) ;
o) 27r022(i)e 2\Y2— A2 22 if Coa(i) #0
0 otherwise

and for all i with p*(i) > 0 we let
A*(i) = A1 (i) + Cr2(9) (y2 — Aa(i))/Ca2(7)
C*(i) = C11(i) — C12(1)Ca1 (7)) Coa(i).

Intuitively the operation reflects that any deterministic explanation of the
evidence (with Cyy(7) = 0) is infinitely more likely than a non-deterministic
one, if it is available. The calculation for case (2a) is simply based upon the
fact that

P(I=4,Y =y5)

if P(Y =y2) >0

whereas a standard density calculation is appropriate in case (2b), where
P(Y =y,) =0.
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The correctness of the operation can be formally proved by a small cal-
culation in (not so elementary) probability. For simplicity we only give this
argument in the case where Y7 is void, so that Yo =Y.

Let q(i|y) denote the kernel obtained by normalizing p* above, but where

we have let the dependence on y be explicit, i.e.

p*(7)

q(ily) :m

We need to show that for any interval D on the real line, ¢ satisfies the

relation

P(I=i,Y €D) =/Dq<z'\y>u<dy),

where p is the marginal distribution of Y, i.e.
D) =3 p(j)u;(D
J

and p; denoting the normal distribution N{A(j), C(j)}, degenerate at A(j)
it C(j) =0
For Oy (i) = 0, we have

/ a(ily) 1y (dy) = {q{iA(j)} if A(j) € D and C(j) =
D

0 otherwise.

Thus we get

/ q(ily { p(j)qli|A(j)} if AG) €D
D

otherwise
{ if A(i
othervvlse

= P(I=iY € D).

If Ca2(i) > 0 we similarly get

| atily)ntdy) = 2 el + 3 p() [ alilw) sy

J:C(5)#0

— 0+ ily) pi(dy) = P(I =i,Y € D).
%ﬁop /D y) iy (dy

When a piece of continuous evidence has been inserted, the represen-

tation is still a ‘complement’ representation, and the insertion of the next
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7
-
D @
S G

Figure 3: Bayesian network and strong junction tree for the WASTE incinera-
tor example. The variables are W (type of waste), F' (filter state), B (burn-
ing regimen), M; (metals in waste), E (filter efficiency), C' (CO2 emission),
D (emission of dust), M, (emission of metals), and L (light penetrability).
The variables W, F and B are discrete.

Do oo

piece of evidence can take place. When all evidence has been inserted, we
COLLECT towards the root as during initialization. This collection will only
involve proper computations in the discrete part of the potentials. And
the normalizer at the root clique will be equal to the joint density of the

evidence.

Example 4 Our final example is the WASTE example described in Lau-
ritzen (1992) and Cowell et al. (1999), Section 7.7, and we refer to either
of these for the details of the numerical specifications. The example is
concerned with the control of the emission of heavy metals from a waste

incinerator:

The emission from a waste incinerator differs because of compo-
sitional differences in incoming waste. Another important factor
is the waste burning regimen which can be monitored by measur-
ing the concentration of COg in the emission. The filter efficiency
depends on the technical state of the electrofilter and the amount
and composition of waste. The emission of heavy metals depends

both on the concentration of metals in the incoming waste and
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the emission of dust particulates in general. The emission of dust

is monitored through measuring the penetrability of light.

The essence of this description is represented in the Bayesian network of
Figure 3, which also shows a junction tree. The strong root can be chosen
either as {B,C} or {B, F, W, E}. There is only one way to assign (the po-
tentials corresponding to) the continuous variables to cliques of the junction
tree: C is assigned to {B,C}, D to {B,W,E,D}, E to {B,F,W,E}, L to
{L,D}, M; to {W,D,M;}, and M, to {D,M;, M,}. So, there is exactly
one potential involving continuous variables assigned to each clique, and the
continuous components of these potentials become the corresponding con-
tinuous components of the clique potentials of the initialized strong junction
tree. This is because the COLLECT operation — for this particular junction
tree —does not change the continuous components of the clique potentials
during the initialization process.

Incorporation of evidence on C or E can be done without invoking the
PusH operation, since these variables appear either as head in the root or
in a clique with discrete separator towards the root. Incorporating evidence
on D requires D to be PusHed to {B, F,W, E} (unless evidence on E has
already been incorporated). Similarly, incorporation of evidence on L will
require PUsHing L to {B, F, W, E} unless some separator along the path
from {L,D} to {B, F,W, E} has been made empty or fully discrete by in-
corporation of evidence on D and/or E.

Before incorporation of evidence on M; and M, the clique {W, D, M;} has
a potential with head {M;} and an empty tail. Incorporating evidence on M;
at this point can therefore be done without invoking the PUSH operation. If,
on the other hand, evidence on M, (but not on D) has been incorporated,
the potential on the clique {W, D, M;} will have head and tail ({M;}[{D})
and incorporating evidence on M; at this point will require PusHing M;
closer to {B, F, W, E}.

Incorporation of evidence on M, requires PUsHing M, to {W, D, M;}
unless evidence have been incorporated on both D and M;.

Similar considerations apply to finding full mixture distributions for in-
dividual continuous variables.

Figures 4 and 5 display full mixture distributions of all the continuous
variables before and after incorporation of the information that the waste

has been of industrial type, L has been measured to 1.1, and C to —0.9. O
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B

=
-1.85 Mean 1.48036 Mean
0.507445 5D = 0.631053 5D =

Figure 4: Screendumps from the HUGIN software displaying full marginals
of all continuous variables from the WASTE incinerator example before any
evidence has been incorporated.
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E E

-3.89834 Mean 3B07EY Mean
0.0762856 5D = 0.325851 5D =

Figure 5: Screendumps from the HUGIN software displaying full marginals
of the remaining continuous variables from the WASTE incinerator example
after inserting the evidence that the waste has been of industrial type, L has
been measured to 1.1, and C to —0.9.
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