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Stable Local Computation with ConditionalGaussian Distributions�Ste�en L. LauritzenAalborg University Frank JensenHUGIN Expert Ltd.September 1999Abstract: This article describes a propagation scheme for Bayesian net-works with conditional Gaussian distributions that does not have the numer-ical weaknesses of the scheme derived in Lauritzen (1992). The propagationarchitecture is that of Lauritzen and Spiegelhalter (1988).In addition to the means and variances provided by the previous algo-rithm, the new propagation scheme yields full local marginal distributions.The new scheme also handles linear deterministic relationships between con-tinuous variables in the network speci�cation.The new propagation scheme is in many ways faster and simpler thanprevious schemes and the method has been implemented in the most recentversion of the HUGIN software.Key words: Arti�cial intelligence, Bayesian networks, CG distributions,Gaussian mixtures, probabilistic expert systems, propagation of evidence.1 IntroductionBayesian networks have developed into an important tool for building sys-tems for decision support in environments characterized by uncertainty (Pearl1988; Jensen 1996; Cowell et al. 1999).The exact computational algorithms that are most developed are con-cerned with networks involving discrete variables only.�This is Research Report R-99-2014, Department of Mathematical Sciences, AalborgUniversity.
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Lauritzen (1992) developed a computational scheme for exact local com-putation of means and variances in networks with conditional Gaussian dis-tributions. Unfortunately the scheme turned out to have fatal numericaldi�culties, basically due to a computationally unstable transformation be-tween two di�erent representations of these distributions.The motivation for the present work is to remedy this numerical insta-bility. The fundamental idea behind the developments below is at all timesto keep the interesting quantities represented in units that have a directmeaning such as probabilities, means, regression coe�cients, and variances.These must necessarily be of a reasonable order of magnitude.The computational scheme to be developed is rather remote from thecomputational architecture used to deal with the discrete variables in theHUGIN software and similar schemes as represented, for example, in ab-stract form in Shenoy and Shafer (1990) and Lauritzen and Jensen (1997).The di�erence is partly related to the fundamental operations of combina-tion and marginalization being only partially de�ned, but also the handlingof evidence is quite di�erent. The scheme is closest to the original schemedeveloped in Lauritzen and Spiegelhalter (1988), but abstract considera-tions such as those in Shafer (1991) seem necessary to embed the scheme ina unifying framework.Additional bene�ts of the present scheme includes that deterministic lin-ear relationships between the continuous variables can be represented with-out di�culty, and we show how to calculate full local marginals of continuousvariables without much computational e�ort. Both of these represent majorimprovements over the original scheme of Lauritzen (1992).2 CG distributions and regressionsThe Bayesian networks to be considered have distributions that are con-ditionally Gaussian, a family of distributions introduced by Lauritzen andWermuth (1984, 1989). We shall briey review some standard notation butotherwise refer the reader to Lauritzen (1996) for further details.The set of variables V is partitioned as V = � [ � into variables ofdiscrete (�) and continuous (�) type and the joint distribution of the con-tinuous variables given the discrete is assumed to be multivariate Gaussian,i.e. L(Y jI = i) = Nj�j(�(i);�(i)) whenever p(i) = PfI = ig > 0;2
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where Y denotes the continuous variables, I the discrete, j�j denotes thecardinality of �, and �(i) is positive semide�nite. We then say that X =I [ Y follows a CG distribution.The symbol Nj�j(�;�) denotes the multivariate Gaussian distributionwith mean � and covariance matrix �. In the case where � is positivede�nite, this distribution has densityf(y j�;�) = n(2�)j�j det�o�1=2 expn�12(y � �)>��1(y � �)o :If � is singular, the multivariate Gaussian distribution has no densitybut is implicitly determined through the property that for any vector v, thelinear combination v>Y has a univariate Gaussian distribution:L(v>Y ) = N1(v>�; v>�v);where N1(�; 0) is to be interpreted as the distribution degenerate at �.See for example Rao (1973), Chapter 8, for a description of the Gaussiandistribution at this level of generality.Note: there is a slight di�erence between the terminology used here andin Lauritzen (1996) in that we allow p(i) to be equal to 0 for some en-tries i. We also avoid using the so-called canonical characteristics of the CGdistribution as the numerical instability of the scheme in Lauritzen (1992)is associated with switching between these and the moment characteristics(p; �;�). As an additional bene�t, we can then allow singular covariancematrices �.Occasionally it is of interest to describe how a CG distribution dependson additional variables. If the dependence on a set of discrete variables jand a vector of continuous variables z is determined asp(i jJ = j; Z= z) = p(i jj);L(Y jI = i; J = j; Z= z) = N (A(i jj) +B(i jj)z; C(i jj));we refer to this dependence as a (simple) CG regression. Note that neitherthe covariance matrix nor the discrete part depends on the continuous vari-ables z and the conditional expectation of the continuous variables dependslinearly on the continuous variables for �xed values of the discrete variables(i; j). In a general CG regression, p is also permitted to depend on z in aspeci�c way (Lauritzen 1996), but this is not relevant here.3
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3 Mixed Bayesian networksWe consider probabilistic networks over a directed acyclic graph (DAG),known as Bayesian networks (Pearl 1986). A mixed Bayesian network withconditional Gaussian distributions is speci�ed over a set of nodes or vari-ables V , partitioned as V = �[� into discrete and continuous variables asabove. The DAG associated with the network must satisfy the restrictionthat discrete nodes have no continuous parents. The conditional distribu-tions of discrete variables given their (discrete) parent variables are speci�edas usual, whereas the conditional distribution of continuous variables aregiven by CG regressionsL(Y jI = i; Z = z) = N (�(i) + �(i)>z; (i)):Note that as Y is one-dimensional, (i) is just a nonnegative real number.If (i) = 0, this conditional distribution speci�es a linear and deterministicdependence of Y on Z.The assumptions above imply that the joint distribution of all variablesin the Bayesian network is a CG distribution.The computational task to be addressed is that of computing the jointdistribution of interesting subsets of these variables| in particular of a sin-gle variable|possibly given speci�c evidence, i.e. given known values ofarbitrary subsets of other variables in the network. This distribution will ingeneral be a mixture of conditional Gaussian distributions.The propagation scheme to be described involves the usual steps: Con-struction of a junction tree with strong root, initialization of the junc-tion tree, incorporation of evidence, and local computation of marginalsto cliques.4 Potentials and their operations4.1 CG potentialsThe basic computational object is that of a CG potential. A CG potential isrepresented as � = [p;A;B;C](H jT ). Here (H jT ) denotes a partitioning ofthe continuous variables in the domain D of � into head and tail : D \ � =H [T . We denote the variables in the head by Y and those in the tail by Zand assume these to be r and s-dimensional. An arbitrary con�guration ofthe discrete variables in the domain is denoted by i. Thus, every potential4
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has a domain with discrete nodes, head nodes and tail nodes, some of whichcould be absent. In the expression above� p = fp(i)g is a table of nonnegative numbers, i.e. a `usual' potentialas in the discrete case;� A = fA(i)g is a table of r � 1 vectors;� B = fB(i)g is a table of r � s matrices;� C = fC(i)g is a table of r�r positive semide�nite symmetric matrices.The potential represented by [p;A;B;C](H jT ) speci�es the CG regressionP (I = i) / p(i); L(Y jI = i; Z = z) = Nr(A(i) +B(i)z; C(i)):The abstract notion of potentials with head and tail is due to Shafer(1991). In many ways it would be more natural also to partition the dis-crete variables into head and tail variables, then reecting that the potentialsalways represent a conditional distribution of head variables given their tail.But as the partitioning of discrete variables is not exploited in our propa-gation scheme, we have chosen not to do so. A propagation scheme of the`lazy' type (Madsen and Jensen 1998) could exploit such a partitioning.The initial conditional distribution for a continuous variable v with par-ent nodes pa(v) in a mixed Bayesian network corresponds to the CG po-tential [1; �; �>; ](H jT ) with H = fvg, T = pa(v) \ �, and discrete partof the domain equal to pa(v) \�. Similarly, the speci�cation of the condi-tional distribution of a discrete variable given its parents corresponds to theCG potential [p;�;�;�](�j�), where p is determined by the conditionalprobability tables. The discrete part of the domain is equal to the familyfa(v) = v [ pa(v), and hyphens indicate that the corresponding parts of thepotential are void.4.2 Extension and reductionA CG potential can be extended by adding discrete variables to its domainor continuous variables to its tail. When adding discrete variables to itsdomain, the parts of � are extended as p�(i; j) = p(i) etc. When addingcontinuous variables to its tail, the B matrices are extended by adding zerocolumns for each of the new tail variables:B�(i) = fB(i) : 0g:5
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Similarly, if B has columns that are identically zero for all values of i, thecorresponding variables can be removed from the tail of the potential, andwe say that the tail is reduced. If no columns of B are identically zero, thetail of the potential is said to be minimal.4.3 MarginalsAs in the propagation scheme of Lauritzen (1992), marginals of a CG po-tential are only de�ned under certain conditions and when marginals overgroups of discrete and continuous variables are calculated, the marginalsover continuous variables are calculated �rst.Marginals over continuous variables can only be calculated over headvariables. If [p; A;B;C](H jT ) is decomposed asH = (H1; H2); A = �A1A2 � ; B = �B1B2 � ; C = �C11 C12C21 C22 � ;corresponding to a partitioning of the head variables as Y = (Y1; Y2), themarginal of � to D0 = D nH2 is given as�#D0 = [p;A1; B1; C11](H1 jT ):We say that these marginals are strong as they correspond to calculatingordinary marginals of the relevant conditional Gaussian distributions.When all head variables have been removed by marginalization, the tailcan be reduced to become empty so that a discrete potential emerges. Thisleads indirectly to marginalization of tail variables.Marginals over discrete variables are de�ned only when the tail of thepotential is empty, i.e. when there are no continuous conditioning variablesand therefore no B matrix. Then the marginal of the CG potential � =[p;A;�; C](H j�) with discrete domain partitioned as U [W over W is�#U[H = [~p; ~A;�; ~C](H j�);where~p(iU ) = XiW p(i)~A(iU ) = 1~p(iU )XiW A(i)p(i)~C(iU ) = 1~p(iU )XiW �C(i) + hA(i)� ~A(iU )i hA(i) � ~A(iU )i>� p(i);6
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where i = (iU ; iW ). This marginalization is said to be weak when it doesnot correspond to calculating the full marginal distribution.In general the full marginal distribution will be a discrete mixture of CGdistributions, and the distribution represented by the weakly marginalizedpotential will be the CG distribution closest in Kullback{Leibler distance tothe true marginal, see Lauritzen (1996), Lemma 6.4.4.4 Direct combinationThe combination operation for CG potentials will not be de�ned for anarbitrary pair of potentials and as such the scheme is quite di�erent frommost other propagation schemes.The direct combination of two CG potentials � = [p; A;B;C](H1 jT1)and  = [q; E; F;G](H2 jT2) is de�ned only if the head of  is disjoint fromthe domain of �, i.e. satis�es thatH2 \D1 = ;: (1)Here we always assume that the potentials have �rst been reduced so thatthe tails are minimal.If (1) is ful�lled for the reduced potentials, these are subsequently ex-tended such that the extensions have T2 = H1[T1. This is done by extendingT1 to T1 [ (T2 nH1) and T2 to T2 [H1 [ T1.Next, let F = [F1 : F2] be partitioned into r2 � r1 and r2 � s1 matricescorresponding to (H1; T1). We then de�ne the direct combination as the(apparently non-commutative) product[�; U; V;W ](H jT ) = [p; A;B;C](H1 jT1) _
 [q; E; F;G](H2 jT2);where H = H1 [H2; T = (T1 [ T2) nH; D = D1 [D2;and � = pqU = � AE + F1A�V = � BF2 + F1B �W = � C CF>1F1C G+ F1CF>1 � :7
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This combination operation corresponds to ordinary composition of condi-tional distributions. Note that if both of � _
  and  _
 � exist, they areequal. The direct combination also satis�es(� _
  ) _
 � = � _
 ( _
 �)in the sense that if the combinations on one side are well de�ned, so are thoseon the other side and the resulting potentials are the same. Shafer (1991)has called this type of algebraic structure a partial commutative semigroup.The notation above reects that the operation of direct combination insome sense is similar to that of forming disjoint union of sets.Unfortunately, direct combination of CG potentials is not su�cient forour propagation scheme to work for an arbitrary mixed Bayesian network.But before we can de�ne a more general combination, we need to introducethe notion of complement.4.5 ComplementsIf the head of a CG potential � = [p;A;B;C](H jT ) is partitioned asH = (H1; H2); A = �A1A2 � ; B = �B1B2 � ; C = �C11 C12C21 C22 � ;and [p�; A1; B1; C11](H1 jT ) is the strong marginal of �, then we de�ne itscomplement �jH1[T as the CG potential [q; E; F;G](H2 jH1 [ T ), whereq = p=p�E = A2 � C21C�11A1F = [C21C�11 : B2 � C21C�11B1 ]G = C22 � C21C�11C12:HereM� denotes an arbitrary generalized inverse of the matrixM (Penrose1955), i.e. an arbitrary matrix M� satisfyingMM�M =M; (2)see also Rao (1973), pp. 24{27, and Rao and Mitra (1971). Then[p;A;B;C](H jT ) = [p�; A1; B1; C11](H1 jT ) _
 [q;E; F;G](H2 jH1 [ T );which is easily checked by using the formulae for combination togetherwith (2) and the fact that for any generalized inverse C�11 of C11 it alsoholds that C21C�11C11 = C21;see e.g. Rao (1973), formula (8a.2.12).8
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Note that in the above expressions we either have p� = p or H1 = ;. Thedecomposition of a potential into its strong marginal and its complementcorresponds exactly to the decomposition of a probability distribution intoits marginal and conditional.4.6 Recursive combinationWe next de�ne a more general combination of CG potentials. This is re-quired for the initialization process described in the section below. Consideragain two potentials � = [p;A;B;C](H1 jT1) and  = [q; E; F;G](H2 jT2)with minimal tails. If H1 \H2 6= ; the combination will remain unde�ned.If the heads of the potentials are disjoint, we let�
  = � _
  or �
  =  _
 �if at least one of the right-hand-side expressions are de�ned. As we have� _
  =  _
 � if both are de�ned, there is no ambiguity in this de�nition.If neither of the direct combinations are de�ned, we must have thatH1 \D2 6= ; and H2 \D1 6= ;: (3)Let D12 = H1 n D2 and D21 = H2 n D1. If both of these are empty, thecombination will not be de�ned. Else we decompose one of the factors, say �(assuming D12 6= ;), as� = �#(D1nD12) _
 �j(D1nD12) = �0 _
 �00and attempt to combine � and  as�
  = (�0 
  ) _
 �00:This equation is to be understood recursively in the sense that the proce-dure described is to be repeated for the product �0 
  , whereas the directcombination in the expression is well de�ned by construction.The recursion terminates unsuccessfully if two potentials with minimaltails satisfy (3) and also H1 nD2 = H2 nD1 = ;: (4)Then the combination of � and  remains unde�ned.
9
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5 InitializationSetting up the computational structure involves several steps: forming astrong junction tree with strong root, assigning potentials to cliques, trans-forming these to potentials of a speci�c form by sending messages �rst to-wards the root, then away from the root.A junction tree with strong root is constructed in the usual way, seefor example Cowell et al. (1999), Chapter 7. Thus, we assume to beginour computational scheme at the point where we have speci�ed a mixedBayesian network and an associated junction tree with cliques C and a rootR 2 C such that for all neighbouring cliques C and D with C closer to theroot than D, we have thatS = C \D � � or D n C � �; (5)i.e. if the `residual' D nC contains a discrete variable, then the separator Sconsists of discrete variables only. Also, it holds for all variables v that fa(v)is contained in some clique of the junction tree.5.1 Assignment of potentials to cliquesEvery CG potential corresponding to a speci�cation of the conditional dis-tribution of a node given its parents is assigned to an arbitrary clique of thejunction tree that contains its family. The potentials assigned to a givenclique are subsequently combined in some order. This can always be doneusing direct combination as the DAG is acyclic and each continuous node ishead of exactly one potential.5.2 Collecting messages at the rootThe next step in the initialization process involves sending messages fromthe leaves of the junction tree towards the root in a way similar to theprocess known as CollectEvidence in the standard HUGIN architecture(Jensen et al. 1990), although the messages sent are slightly di�erent. Thus,a clique is allowed to send a message if it is a leaf of the junction tree, orif it has received messages from all of its neighbours further away from theroot. The process stops when the root has received messages from all of itsneighbours. We use the term Collect for this operation.When a Collect-message is sent from a clique C to its neighbour Dtowards the root with separator S = C \D, the potentials �C on C and �D10
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on D are modi�ed to become ��C and ��D, where��C = �jSC ; ��D = �D 
 �#SC ; (6)i.e. ��C is the complement of �C after marginalization to the separator and��D is obtained by combining the original potential with the marginal of �C .It remains to be argued that the combination in (6) is indeed well de�ned.To see this we �rst realize that the heads of any two potentials to becombined must necessarily be disjoint as a variable occurs only once as head.Further, for any of the potentials involved in (6), it holds that tail vari-ables have no parents in the DAG induced by the conditional speci�cationsthat have been combined and possibly marginalized to form the potential.Thus, if the potential is reduced to have minimal tail, there must be a di-rected path from every variable present in the tail of the potential to somevariable in the head of the potential. Because then it holds for any tailvariable u that it is not conditionally independent of the head given theremaining tail variables. Thus there must be a trail which d-connects u tosome variable in the head. As tail variables have no parents, this trail mustinitially be directed away from u and leave the tail immediately. As only tailvariables are in the conditioning set, there can be no head-to-head nodes onthis active trail, which then must form a directed path from u to the head.Assume that (4) is satis�ed and H1 and H2 are both nonempty. Thisimplies H1 � T2 and H2 � T1. From this we deduce that there must be adirected path from every variable u 2 H1 (implying u 2 T2) to some variablev 2 H2 (implying v 2 T1), and from v there must be a directed path to somevariable w 2 H1. Thus, from every u 2 H1 there is a directed path to somew 2 H1, and since H1 is nonempty and �nite, this would contradict theacyclicity of the DAG.To illustrate that recursive combination is necessary for the initializationprocess, we consider two simple examples.Example 1 Consider the DAG in Figure 1. When potentials are assignedto cliques, the nodes c and e must be assigned to fb; c; eg and the remainingnodes to fa; b; c; dg.Combining the potentials in the two cliques leads to potentials with headand tail (fc; egjfbg) in fb; c; eg and (fb; dgjfcg) in fa; b; c; dg.When the �rst of these is marginalized to the separator fb; cg, the resulthas head and tail (fcgjfbg), which cannot be directly combined with thepotential on the root clique fa; b; c; dg.11
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a b cd e a; b; c; d b; c; e
Figure 1: A mixed Bayesian network with associated junction tree. Thevariable a is the only discrete variable and the strong root is fa; b; c; dg.The root clique potential is then decomposed into potentials with headand tail (fdgjfb; cg) and (fbgjfcg). But the latter can be reduced to (fbgj�)as the dependence on c is spurious. The potentials can now be combineddirectly. 2In the example above, it was the potential in the receiving clique thatwas decomposed. And had we not combined the potentials in the receivingclique before combining with the incoming message, the combination couldhave been performed directly. The next example illustrates that it may bethe incoming message which needs to be decomposed and there is no wayto avoid computation during the decomposition.Example 2 Consider the DAG in Figure 2. When potentials are assigned tocliques, the nodes d, e and f must be assigned to fc; d; e; fg, c to fa; c; d; eg,and b to fa; b; dg. There are two choices for the node a and we choose toassign it to the clique fa; b; dg, which is also chosen as root.When Collecting towards the root, the �rst message is the fc; d; eg-marginal of the potential in fc; d; e; fg. This must be calculated by com-bining the assigned potentials to one with head and tail (fd; e; fgjfcg) andthen marginalizing to (fd; egjfcg).Again this cannot be directly combined with the potential on the neigh-bouring clique which has head and tail (fcgjfeg).The incoming potential is then decomposed into potentials with head andtail (fdgjfc; eg) and (fegjfcg). But the latter can be reduced to (fegj�)as the dependence on c is spurious. The potentials can now be combineddirectly. 2After the root has received messages from all its neighbours, the rootpotential contains the correct root marginal and its tail is then empty. Ifevidence has been incorporated, a normalization of the discrete part of theroot potential may be necessary, see Section 7.12
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ab cd efa; b; d a; c; d; e c; d; e; fFigure 2: A mixed Bayesian network with associated junction tree. Thevariable a is the only discrete variable and the strong root could be chosento be either fa; b; dg or fa; c; d; eg.Also, the potential � representing the joint distribution of all the vari-ables is now equal to the combination of all the clique potentials �C� = OC2C �C : (7)In fact, as all marginals computed during the Collect phase have beenstrong, it holds for any subset C0 � C which contains the root R and formsa connected subtree of the junction tree that�#C0 = OC2C0 �C ; (8)where C 0 = SC2C0 C. As the complements are stored in the cliques dur-ing Collect and the separators are not playing a speci�c role during thisprocess, the computation is similar to the process of forming a set chain inLauritzen and Spiegelhalter (1988). Thus the inward computation is of thetype called Lauritzen{Spiegelhalter architecture in Shafer (1996), see alsoLauritzen and Jensen (1997).5.3 Distributing messages from the rootThe �rst step in the calculation of marginals involves sending messages awayfrom the root, similar to DistributeEvidence in the standard HUGINarchitecture. The root begins by sending messages to all its neighbours, anda clique is allowed to send a message as soon as it has received one from itsneighbour closer to the root. We use the term Distribute for this processwhich again has slightly di�erent messages than in the standard HUGINarchitecture. 13
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When a Distribute-message is sent from a clique C to its neighbour Dfurther away from the root with separator S = C \D between them, C hasjust received a message from its neighbour towards the root. We make theinductive assumption that the separator S0 towards the root then containsthe weak clique marginal of the joint potential�S0 = �#S0 :When sending a message, a new potential �S is created on S as follows.First the weak clique marginal at C is calculated as�#C = �S0 _
 �C : (9)That this formula is correct is seen exactly as in Lauritzen (1992). Next thispotential is further marginalized to the separator�S = (�#C)#S = �#S :The combination is well de�ned because after the collect operation, comple-ments were stored in the cliques so the head of �C is disjoint from S0 andthe (weak) marginal is well de�ned as the tail of �C is contained in the headof �S0 implying that the combination in (9) has empty tail.After Distribute the separators all contain weak marginals to the sep-arator nodes.Note that we have chosen not to store the weak clique marginals cal-culated under Distribute, but preferred to keep the original complementpotentials. This is a minor variation of the Lauritzen{Spiegelhalter archi-tecture.The initialization process is now completed. The cliques of the junctiontree contain complement potentials, the separators contain weak marginalsof the joint potential, and this joint potential can be recovered by (7).6 Computation of marginalsWhen the junction tree has been initialized as described in the previoussection, various types of marginals can easily be calculated.6.1 Marginals of variables in a single cliqueIf not stored separately, weak clique marginals can always be recalculatedas in (9) when needed, and further marginalized to subsets of cliques, inparticular to single nodes. 14
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Under some circumstances, these weak marginals happen to be strongand give the correct, full marginal distribution of the variables involved.This is clearly true if the desired marginal involves discrete variables only.But there are other cases of interest when this is true.As already mentioned, the root clique contains the correct full marginaldistribution of its variables. Thus, for example, the true marginal of the setof continuous variables Y in the root clique can be easily calculated as aGaussian discrete mixture with weights p(i), i.e.L(Y ) =Xi p(i) � N (A(i); C(i)); (10)where the root potential is [p;A;�; C](R \ � j�). Further marginalizationcan then easily be performed.But the same holds for a clique C that satis�es the slightly less restrictivecondition that the tail of its potential is empty. For example, this is the caseif the separator of the clique C towards the root contains discrete variablesonly.To see this we argue as follows. From (8) we have that the true marginalto the union of cliques on the path from the root to C is given by combinationof the relevant potentials �#D = kOj=1�Cj ;where D = k[j=1Cjand the cliques on the path are R = C1; : : : ; Ck = C. The continuous vari-ables in C are conditionally independent of the remaining discrete variableson this path, given the separator variables; as the tail of the potential on Cis assumed empty, this also holds given just the discrete separator variables.Proposition 6.3 of Lauritzen (1996) then yields that the weak marginal to Cis also equal to the full marginal and we can proceed as with the root clique.6.2 Rearranging the junction treeTo obtain the marginal of a set of variables that is not a subset of some cliqueof the junction tree or to obtain strong marginals of a group of variables ora single variable that is not in a clique having a potential with an emptytail, the junction tree must be rearranged. Fortunately there is a simple15
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operation that can be used to achieve the necessary rearrangement whichwe denote by Push. It acts on a group of variablesM which are contained ina clique W with neighbour U towards the root and corresponding separatorS = U \W . The operation Push appplied to the variables M does thefollowing:1. The potential �W is decomposed as�W = (�W )#M[S _
 (�W )jM[S:2. The clique U is extended to U� = U [M and similarly S� = S [M .3. The potentials are changed as�U� = �U _
 (�W )#M[S ; �S� = �S _
 (�W )#M[S ; �W = (�W )jM[S :After the Push operation the variables in M have come closer to the strongroot, but the extended junction tree still represents the joint potential asafter the initialization. The price that has been paid is that the clique Uhas increased to U�.Example 3 We illustrate the Push operation using the mixed Bayesiannetwork in Figure 2, assuming that we have chosen fa; b; dg as root.After initialization the clique fa; c; d; eg contains the potential represent-ing the conditional distribution of variables fc; eg given fa; dg having headand tail (fc; egjfdg).If we use Push on fcg, this potential is decomposed into its marginal withhead and tail (fcgjfdg) and complement with head and tail (fegjfc; dg).The root clique is now extended with the variable c and the marginal iscombined with the root potential, whereas the complement is kept in theclique fa; c; d; eg. 26.3 Marginals of variables in di�erent cliquesIf a (weak) marginal is desired of a set of variables that is not a subset ofsome clique of the original junction tree, we �rst form the smallest connectedsubtree of the original junction tree that contains all the variables. Let Cbe the clique of the subtree that is closest to the strong root of the originaljunction tree. By repeated use of the Push operation we eventually achievethat the variables in question all become members of C. The desired weakmarginal can then be computed directly using (9).16
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6.4 Strong marginalsIf the strong marginal of a group of variables is desired, the Push operationagain yields the appropriate rearrangement of the junction tree.As in the computation of weak marginals, we �rst form the smallestconnected subtree of the original junction tree that contains all the variables.Let C be the clique of this subtree that is closest to the strong root R ofthe original junction tree. Again, we use the Push operation to make thevariables in question become members of C. If C, after performing the Pushoperations, has a potential with an empty tail, we can compute the desiredstrong marginal from the potential of C as in (10). Otherwise, we need toPush the variables in question closer to R until we eventually have all thevariables contained in a clique having a potential with an empty tail; fromthe potential of this clique we can compute the desired potential as in (10).If necessary, we may need to Push the variables all the way to R.The calculation of the strong marginal for a single continuous variableis an important special case, and from the above discussion it follows thatsuch a marginal can be calculated with limited additional e�ort, since nopotential of the junction tree will be extended with more than a singlecontinuous variable as part of this calculation.7 Incorporating evidenceAt this point we assume that the initialization process has been completed sothat the cliques of the junction tree contain complements and the separatorscontain weak marginals.Discrete evidence is incorporated as usual, it does not matter where, andit is not necessary to insert discrete evidence in more than one clique.To describe how to incorporate continuous evidence we �rst realize thatevery continuous node necessarily appears as head in exactly one clique,which is the clique where it appears closest to the strong root. In all otherclique potentials where it appears, it must be a tail node.Also, if U and W are neighbouring cliques with U closest to the root,the continuous variables in the separator S = U \W constitute a supersetof the tail of the potential (complement) that is stored in W .It is most convenient to incorporate evidence about continuous nodes asingle node at a time. Evidence that Y2 = y2 must be entered in all cliqueswhere Y2 appears. We assume that the clique where Y2 appears as headhas a potential with an empty tail. If this is not the case, we use the Push17
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operation described above in Subsection 6.2 until we achieve this. We thenproceed as follows:1. In cliques where Y2 is a tail node, the tail of the clique potentialis decreased by Y2, p and C are unchanged, and B is changed byremoving the column B2 corresponding to Y2. A is modi�ed to becomeA� = A+B2y2.2. In the clique where Y2 is a head node we partition the head nodes asunder marginalization into Y = (Y1; Y2). The potential after insertedevidence is denoted �� = [p�; A�; B�; C�](H� jT �). The head H� isobtained from H by removing Y2. The tail T � (and thus B�) is empty.We then distinguish two cases:(a) If there is a j with C22(j) = 0 and y2 = A2(j), we let for all ip�(i) = � p(i) if y2 = A2(i) and C22(i) = 00 otherwiseand for all i with p�(i) > 0 we letA�(i) = A1(i); C�(i) = C11(i):(b) Else we letp�(i) = 8><>: p(i)p2�C22(i)e� 12 (y2�A2(i))2=C22(i) if C22(i) 6= 00 otherwiseand for all i with p�(i) > 0 we letA�(i) = A1(i) + C12(i)(y2 �A2(i))=C22(i)C�(i) = C11(i)� C12(i)C21(i)=C22(i):Intuitively the operation reects that any deterministic explanation of theevidence (with C22(i) = 0) is in�nitely more likely than a non-deterministicone, if it is available. The calculation for case (2a) is simply based upon thefact that P (I = i jY2= y2) = P (I = i; Y = y2)P (Y = y2) if P (Y = y2) > 0whereas a standard density calculation is appropriate in case (2b), whereP (Y = y2) = 0. 18
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The correctness of the operation can be formally proved by a small cal-culation in (not so elementary) probability. For simplicity we only give thisargument in the case where Y1 is void, so that Y2 = Y .Let q(i jy) denote the kernel obtained by normalizing p� above, but wherewe have let the dependence on y be explicit, i.e.q(i jy) = p�(i)Pj p�(j) :We need to show that for any interval D on the real line, q satis�es therelation P (I = i; Y 2D) = ZD q(i jy) �(dy);where � is the marginal distribution of Y , i.e.�(D) =Xj p(j)�j(D)and �j denoting the normal distribution NfA(j); C(j)g, degenerate at A(j)if C(j) = 0.For C22(i) = 0, we haveZD q(i jy) �j(dy) = � qfi jA(j)g if A(j) 2 D and C(j) = 00 otherwise.Thus we getZD q(i jy)�(dy) = �Pj:C(j)=0 p(j)qfi jA(j)g if A(i) 2 D0 otherwise= � p(i) if A(i) 2 D0 otherwise= P (I = i; Y 2 D):If C22(i) > 0 we similarly getZD q(i jy)�(dy) = Xj:C(j)=0p(j)qfi jA(j)g + Xj:C(j)6=0p(j) ZD q(i jy) �j(dy)= 0 + Xj:C(j)6=0p(j) ZD q(i jy) �j(dy) = P (I = i; Y 2 D):When a piece of continuous evidence has been inserted, the represen-tation is still a `complement' representation, and the insertion of the next19
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Figure 3: Bayesian network and strong junction tree for the waste incinera-tor example. The variables are W (type of waste), F (�lter state), B (burn-ing regimen), Mi (metals in waste), E (�lter e�ciency), C (CO2 emission),D (emission of dust), Mo (emission of metals), and L (light penetrability).The variables W , F and B are discrete.piece of evidence can take place. When all evidence has been inserted, weCollect towards the root as during initialization. This collection will onlyinvolve proper computations in the discrete part of the potentials. Andthe normalizer at the root clique will be equal to the joint density of theevidence.Example 4 Our �nal example is the Waste example described in Lau-ritzen (1992) and Cowell et al. (1999), Section 7.7, and we refer to eitherof these for the details of the numerical speci�cations. The example isconcerned with the control of the emission of heavy metals from a wasteincinerator:The emission from a waste incinerator di�ers because of compo-sitional di�erences in incoming waste. Another important factoris the waste burning regimen which can be monitored by measur-ing the concentration of CO2 in the emission. The �lter e�ciencydepends on the technical state of the electro�lter and the amountand composition of waste. The emission of heavy metals dependsboth on the concentration of metals in the incoming waste and20
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the emission of dust particulates in general. The emission of dustis monitored through measuring the penetrability of light.The essence of this description is represented in the Bayesian network ofFigure 3, which also shows a junction tree. The strong root can be choseneither as fB;Cg or fB;F;W;Eg. There is only one way to assign (the po-tentials corresponding to) the continuous variables to cliques of the junctiontree: C is assigned to fB;Cg, D to fB;W;E;Dg, E to fB; F;W;Eg, L tofL;Dg, Mi to fW;D;Mig, and Mo to fD;Mi;Mog. So, there is exactlyone potential involving continuous variables assigned to each clique, and thecontinuous components of these potentials become the corresponding con-tinuous components of the clique potentials of the initialized strong junctiontree. This is because the Collect operation| for this particular junctiontree|does not change the continuous components of the clique potentialsduring the initialization process.Incorporation of evidence on C or E can be done without invoking thePush operation, since these variables appear either as head in the root orin a clique with discrete separator towards the root. Incorporating evidenceon D requires D to be Pushed to fB;F;W;Eg (unless evidence on E hasalready been incorporated). Similarly, incorporation of evidence on L willrequire Pushing L to fB; F;W;Eg unless some separator along the pathfrom fL;Dg to fB;F;W;Eg has been made empty or fully discrete by in-corporation of evidence on D and/or E.Before incorporation of evidence onMi andMo the clique fW;D;Mig hasa potential with head fMig and an empty tail. Incorporating evidence onMiat this point can therefore be done without invoking the Push operation. If,on the other hand, evidence on Mo (but not on D) has been incorporated,the potential on the clique fW;D;Mig will have head and tail (fMigjfDg)and incorporating evidence on Mi at this point will require Pushing Micloser to fB; F;W;Eg.Incorporation of evidence on Mo requires Pushing Mo to fW;D;Migunless evidence have been incorporated on both D and Mi.Similar considerations apply to �nding full mixture distributions for in-dividual continuous variables.Figures 4 and 5 display full mixture distributions of all the continuousvariables before and after incorporation of the information that the wastehas been of industrial type, L has been measured to 1:1, and C to �0:9. 221



www.manaraa.com

Figure 4: Screendumps from the HUGIN software displaying full marginalsof all continuous variables from the waste incinerator example before anyevidence has been incorporated. 22
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Figure 5: Screendumps from the HUGIN software displaying full marginalsof the remaining continuous variables from the waste incinerator exampleafter inserting the evidence that the waste has been of industrial type, L hasbeen measured to 1:1, and C to �0:9.AcknowledgementsThe �rst author has bene�ted from conversations with Glenn Shafer con-cerning the development of an abstract theory of local computation. Theresearch has been partly supported by the Danish Research Councils throughthe PIFT programme.Anders L. Madsen provided helpful comments on a draft version of thispaper, and Lars M. Nielsen prepared the HUGIN screendumps shown inFigures 4 and 5.
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